EVR-5086 Assignments

Adyan Rios

2025-10-07

Table of contents

Introduction
Set Up . o o o o e
Assignment 1 — Calculus Review
Assignment 1 - Calculus Review
1.1 Plot the polynomial
1.2 Solve the 2-D Laplace in Excel
1.3 Plot streamlines instead of arrows in Section 1.2.3
1.4 Links to Colab and GitHub
Assignment 2 - Reading On-line Data and Visualizing Hurricane Tracks
Assignment 2 - Reading On-line Data and Visualizing Hurricane Tracks
2.1 Data Retrieval and Parsing o o0
2.2 Data Visualization
2.3 Links to Colab and GitHub
Assignment 3 - Normal distributions and the Galton board
Assignment 3 - Normal distributions and the Galton board
3.1 Exercise 1 o e e
3.2 Exercise 2 e e
3.3 Exercise 3 e
Exercise
4.1 Exercise 4o e e
4.2 Links to Colab and GitHub,
Assignment 4
Assignment 4 e e
5.1 Exercise 1 e e e e
5.2 Exercise 2 e
5.3 Exercise 3 L e e e e
5.4 Exercise 4o e e
5.5 Exercise b e e e

w W

Introduction

Although the EVR-5086 class is being taught using Python, my prior experience is with R.
I am also fond of sharing my work on GitHub. I have learned how GitHub pages combined
with Quarto and R Studio are an extraordinary resource for developing and maintaining lab
notebooks. To get better at using these tools (and the reproducibility and accessibility of my
future research) I have created a html quarto book and pdf to show my work associated with
the course assignments.

Set Up

I started by creating a GitHub account (username: arios101-fiu). Then, I created a GitHub
repository with a gitignore and readme.md. Initially, the repository was called EVR-5086-
Assignement1, but I updated it to (EVR-5086-Assignments). I cloned the repository into R
Studio, thereby creating a R project. I copied in a _ quarto.yml and index.qmd files from
another project. I updated the files, rendered, committed, and pushed. Next, I turned on
GitHub pages and updated the URLs in the yml and repository.

https://github.com/arios101-fiu/EVR-5086-Assignements

1 Assignment 1 — Calculus Review

EVR-5086 Fall 2025

Assignment 1 - Calculus Review

1.1 Plot the polynomial

Below are the steps I took to complete the first part of EVR-5086 Assignment 1.

In doing this exercise in R, I started by loading the R libraries I will use in this chapter. I
used {ggplot2} for plotting, and {tidyr} and {dplyr} for data wrangling.

Check if libraries are installed; install if not.
if (!require("pacman")) install.packages("pacman")
pacman: :p_load(ggplot2, tidyr, dplyr)

Next, I defined the variables and created the vectors I will need for the plot.

Define variables
<= 1
<- 1
<-1
<- 2
<-1
= &

Q 0o o B e o#H

+*

Create x vector from -1 to 1
<- seq(from = -1, to =1, by = 0.1)

s}

Calculate a value of y for each value of x
y <= (a * (x"n)) + (b * (x7p)) + (c * (x"q))

Calculate the analytical derivatives for each value of x
dy dx <- (a *n *x (x(@ - 1)) + (b*xp* (x(p-1))) + (c *xqx*x (x“(q-1)))

Calculate the numerical derivatives between each value of x
deltay <- diff(y)

deltax <- diff(x)

deltay_deltax <- deltay / deltax

For plotting purposes, derive the midpoint across the original values of x
deltax_vec <- x[-length(x)] + deltax / 2

My next goal was to unite all of the vectors into a long data format. I did this by creating a
data frame, then pivoting the data to only have the values that will be plotted on the x and
y axis, as well as a label. Later, I will use my “linetype” label to define line types as well as
the colors and shapes in my plot.

Build data frames and rename variables for plot
plot_prep <- data.frame(x, y, dy_dx) |>
dplyr: :rename(Polynomial = y, "Analytical derivative" = dy_dx)

Wrangle to long data format and bind in numerical derivative
plot_tidy <- plot_prep |>

tidyr: :pivot_longer(!x, names_to = "linetype", values_to = "y") |[>
dplyr: :bind_rows(data.frame(x = deltax_vec, y = deltay_deltax,
linetype = "Numerical derivative"))

Lastly, I create the plot and reflect on the observations and limitations of the numerical
derivative.

Figure 1.1 shows that the numerical derivative, shown as red open circles, is very similar to
the analytical derivative, shown as a blue solid line. The good match we see relates to the
scale over which we calculated the numerical derivative compared to the scale of the rate of
change in the polynomial. When calculating the numerical derivative, we can get the average
rate of change between two points.

Note that for the analytical derivative we are only providing the plot with information asso-
ciated with x values ranging -1 to 1, in steps of 0.1. Meanwhile, the numerical derivative is
plotted at the midpoints of our original segments, with x values ranging from -0.95 to 0.95.
Including the numerical derivatives in the appropriate position relative to the curved lines
plotted between our analytical derivatives results in the overlay of the points and the line.

If the numerical derivative had a significantly lower resolution (e.g. just -1 and 1), it would
not match well, and would be just one point, at x = 0, above the “U” shaped line representing

the analytical derivative. Although such a wide spacing is extreme to consider, it helps to
emphasize that grid spacing and location plotted are important considerations when working
with numerical derivatives.

Plot the analytically derivative as a solid line
and the numerical derivative as open symbols
polynomial_plot <- ggplot(data = plot_tidy,
aes(x = x, y =y, color = linetype)) +
geom_point (

data = dplyr::filter(plot_tidy, linetype == "Numerical derivative"),
shape = 21, stroke = 1.25
) +
geom_line(
data = dplyr::filter(plot_tidy, linetype != "Numerical derivative")
)+

theme(legend.title = element_blank()) +
scale_color_manual(values = c(4, 2, 1)) +
theme minimal() +
theme (legend.title = element_blank()) +
labs(
title = "Plot of polynomial with analytical and numerical derivatives"

)

polynomial_plot

Plot of polynomial with analytical and numerical derivatives

6
4
— Analytical derivative
> O Numerical derivative
2 — Polynomial
0

Figure 1.1: Polynomial defined by values provided in EVR-5086 Assignment 1 \n (black line),
along with analytical derivative (blue line) and numerical \n derivative (red open
circle).

1.2 Solve the 2-D Laplace in Excel

I created a 28 by 28 grid of the 2-D Laplace Equation. I included three internal “boundary
values”; one high value of 4 and two low values of -2 and -3. The two low values were near each
other compared to their respective distances to the high value. I allowed excel to iteratively
calculate for 10,000 iterations with a minimum change of 0.0001. I saved the file as a CSV file
after including explicit zeros surrounding the formulas. The dimensions of my data were 30
by 30. I rounded to four significant digits to see if stagnation areas would be more evident by
avoiding calculating of extremely small differences.

1.2.1 Read in and plot contours using Python

Start by turning on Python in R. This requires the package {reticulate} in R which embeds a
Python session within the R session. The function py_ require() is also used to declare Python
packages that will be used in the R session.

Check if libraries are installed; install if not.
if (!'require("reticulate")) install.packages("reticulate")

Loading required package: reticulate

Load reticulate
library(reticulate)

Ensures matplotlib package is available in the current session
if (!py_module_available("matplotlib")) py_require(c("matplotlib"))

The rest of the assignment is run in Python. First, I import the numpy and matplotlib.pyplot
packages and read in the CSV file that I had created in excel. To prepare the data for plotting,
I create two arrays using np.linspace() and combine them into a 30 x 30 grid of x and y
coordinates using np.meshgrid(). Finally, the partial derivatives for h with respect to x and y
are calculated using np.gradient().

Import packages
import numpy as np
import matplotlib.pyplot as plt

Load csv file from excel
h = np.loadtxt('tripole.csv',delimiter=",")

Create a grid of x and y coordinates
x_vec = np.linspace(-1.5, 1.4, 30)
y_vec = np.linspace(-1.5, 1.4, 30)

X, Y = np.meshgrid(x_vec, y_vec)

Calculate gradient/partial derivatives
[dhdy, dhdx] = np.gradient(h, y_vec, x_vec)

Round to 4 significant figures
dhdy4 = np.round(dhdy, 4)
dhdx4 = np.round(dhdx, 4)

Figure 1.2 recreates the surface plot that perviously had been explored in Excel. The x- and
y-axis range from -1.5 to 1.4, while the h-axis ranges from -3 to 4. Figure 1.3 shows a contour
map with flow vectors. Finally, Figure 1.4 provides a similar plot to Figure 1.3, but with
streamlines instead of arrows.

Reviewing the contours, flow vectors, and streamlines I did not identify stagnation points.
When I selected the two low points, I was expecting a stagnation “saddle effect”. However, the
proximity and the similarity in values I used did not result in a stagnation area. Interestingly,
the majority of the surface plotted consisted of extensive areas of very low gradients. Figure 1.4
shows that the streams would run beyond the edges across approximately 60% of the plotted
grid.

The following three Python code chunks created Figure 1.2, Figure 1.3 and Figure 1.4, respec-
tively.

1.2.2 Surface plot

fig = plt.figure(figsize = [4, 4], dpi = 300) #Create empty figure

ax = plt.axes(projection = '3d') # Create plot region

ax.set_title(" " * 20 + 'Surface plot'+ " " % 20) # Include plot title and pad space for h-
ax.set_xlabel ('x-axis') # Include x-axis label

ax.set_ylabel('y-axis') # Include y-axis label

ax.set_zlabel ('h-axis', rotation = 90) # Include vertical h-axis label

surf = ax.plot_surface(X,Y,h) # Plot surface

plt.show() # Render plot

Surface plot

h-axic

[|
WNRPHFNWN

—1.5_1_(105 .
0.0 05 -1.0 N

*Za*js "~ 1.0 15 -15

Figure 1.2: Plot of vector arrows using Python. The vectors indicate strength and direction
of the negative gradient. The vectors are displayed over the contours of a tri-pole
solution with a high value of 4 and lows of -2 and -3. The two low values were near
each other compared to their respective distances to the high value.

plt.close('all') # Prevent accidental overplotting onto an old figure

1.2.3 Plot contour map and flow vectors

Plot contour map and flow vectors
plt.contourf(X, Y, h) # Draw contours for h on grid coordinates (x,Y)

cbar = plt.colorbar() # Add colorbar
cbar.set_label('Ground water potential surface (h)') # Include lable on colorbar

plt.axis('equal'); # Force equal scaling on x and y

(np.float64(-1.5), np.float64(1.4), np.float64(-1.5), np.float64(1.4))

10

plt.title('Contour map and flow vectors') # Include plot title
plt.xlabel('X-axis') # Include x-axis label
plt.ylabel('Y-axis') # Include y-axis label

gplt = plt.quiver(X, Y, -dhdx4, -dhdy4, scale = 360) # Draw vector arrows; note: large scale:
plt.show() # Render plot

Contour map and flow vectors

4
<
1.0_ (]
(@]
Re)
0.5 - a
©
v 1<
X 0.0 o)
© -+
N 3
~0.5 A o
2
©
-1.0 - S
e
(]
_15 A

-15 -1.0 -0.5 0.0 0.5 1.0 1.5
X-axis

Figure 1.3: Plot of vector arrows using Python. The vectors indicate strength and direction
of the negative gradient. The vectors are displayed over the contours of a tri-pole
solution with a high value of 4 and lows of -2 and -3. The two low values were near
each other compared to their respective distances to the high value.

plt.close('all') # Prevent accidental overplotting onto an old figure

1.3 Plot streamlines instead of arrows in Section 1.2.3

Plot contour map streamlines
plt.contourf(X, Y, h) # Draw contours for h on grid coordinates (x,Y)
cbar = plt.colorbar() # Add colorbar

11

cbar.set_label('Ground water potential surface (h)') # Include lable on colorbar
plt.axis('equal'); # Force equal scaling on x and y

(np.float64(-1.5), np.float64(1.4), np.float64(-1.5), np.float64(1.4))

plt.title('Contour map and streamlines') # Include plot title
plt.xlabel('X-axis') # Include x-axis label
plt.ylabel('Y-axis') # Include y-axis label

plt.streamplot(X, Y, -dhdx4, -dhdy4) # Draw streamlines

<matplotlib.streamplot.StreamplotSet object at 0x0000022790B556D0>

plt.show() # Render plot

Contour map and streamlines

4
<
1.0 -)
(@)
£
0.5 @
©
) <
X 0.0+]
ro -+
Nif g
~0.5 1 2
S
©
—-1.0 - 5
e
(O]
-15

-15 -1.0 -0.5 0.0 0.5 1.0 1.5
X-axis

Figure 1.4: Plot of streamlines using Python. The streamlines are displayed over the contours
of a tri-pole solution with a high value of 4 and lows of -2 and -3. The two low
values were near each other compared to their respective distances to the high
value.

12

plt.close('all') # Prevent accidental overplotting onto an old figure

1.4 Links to Colab and GitHub

Draft code on Colab
Quarto book chapter on GitHub

13

https://colab.research.google.com/drive/1_BJpxgIL9vjXB_Tx_6ufPyzZI1mWZLWr
https://arios101-fiu.github.io/EVR-5086-Assignements/assignment1/rios_evr5086_hw1.html

2 Assignment 2 - Reading On-line Data and
Visualizing Hurricane Tracks

EVR-5086 Fall 2025

Assignment 2 - Reading On-line Data and Visualizing Hurricane
Tracks

2.1 Data Retrieval and Parsing

The purpose of this code is to access and format the HURDAT2 dataset into an analysis-ready
format. Since I expect to explore these data further, I did not want to perform wrangling and
formatting only on filtered subsets. Instead, I extracted the header information for each storm
record, expanded it, and attached it to each corresponding data line.

There are many possible approaches to this task, including base R methods. I chose to use tidyr
and dplyr because their piping syntax allows me to write modular code without overwriting
objects or cluttering the global environment. While I could have created a single long script,
I prefer a modular workflow where each section has a clear intention. For example, this part
of the workflow focuses only on data retrieval and formatting.

At the end of Section 2.1, I save the resulting data frame as an .RDS file. 1 prefer RDS
over RData because RDS requires explicit object naming when loaded, which supports better
coding practices and clearer, more reproducible code.

The steps of the code are annotated in the code chunks, and the first chunk defines and loads
all the required libraries used in Section 2.1. One limitation of my approach is that effective
use or contribution requires familiarity with GitHub, RStudio, and Quarto.

Check if libraries are installed; install if not.

if (!require("pacman")) install.packages("pacman")
pacman: :p_load(here, curl, tidyr, dplyr, lubridate)

14

Specify the source and output file name and location
url <- "https://www.nhc.noaa.gov/data/hurdat/hurdat2-1851-2024-040425.txt"
destfile <- here("assignment2","hurdat.txt")

Download and save the dataset
curl download(url = url, destfile = destfile)

Read in data and differentiate between headers and data lines
lines <- readlLines("hurdat.txt") # Read text file

Prep headers

storm_headers <- lines[grepl("~“AL", lines)] # Keep only storm headers
header_parts <- strsplit(storm_headers, ",") # Split based on ","
header_matrix <- do.call(rbind, header_parts) # Convert to matrix
header_df <- as.data.frame(header_matrix) # Convert to data frame
colnames (header_df) <- c("storm_id", "name", "rows") # Name columns

Repeat each header based on the 'rows' column in tidyr
header_expand <- header_df |[>

mutate(rows = as.numeric(rows)) |[>

uncount (rows)

Prep data

storm_data <- lines[!grepl("~AL", lines)] # Keep only data

hurdat_parts <- strsplit(storm_data, ",") # Split based on ","
hurdat_matrix <- do.call(rbind, hurdat_parts) # Convert to matrix
hurdat_df <- as.data.frame(hurdat_matrix) # Convert to to data frame

hurdat_fields <- c("yyyymmdd", "hhmm", "record", "status",
"lat_hemi", "lon_hemi", "wind", "pressure",
"ne34", "8634", "SW34", unW34n,
IIneSOII s "8650" s ||SW5OII s "IlW50" s
"ne64", "se64", "sw64", "nw64", "radius")

colnames (hurdat_df) <- hurdat_fields # Name columns

Build analysis ready data set
hurdat_ar <- header_expand |>
bind_cols(hurdat_df) |> # Glue together storm id and name with data
mutate (
yyyymndd = ymd(yyyymmdd) , # Tell R this is a date
hhmm = strptime(hhmm, format = "}H%M"), # Tell R this is a time

15

hhmm = format(hhmm, "%H:%M"),

lat = as.numeric(substr(lat_hemi, 1, nchar(lat_hemi)-1)), # Remove "S"
lon = as.numeric(substr(lon_hemi, 1, nchar(lon_hemi)-1)), # Remove "W"
lat_hemi = substr(lat_hemi, nchar(lat_hemi), nchar(lat_hemi)),
lon_hemi = substr(lon_hemi, nchar(lon_hemi), nchar(lon_hemi)),

lat = if_else(lat_hemi == "S", -lat, lat), # Make lat negative if "S"
lon = if_else(lon_hemi == "W", -lon, lon) # Make lon negative if "W"
) 1>
mutate_at(c(9:25), as.numeric) |[> # Make data numeric

mutate (across(where(is.numeric), ~na_if(., -999))) # Replace NAs

Save formatted data to read into next quarto environment
saveRDS (hurdat_ar, file = here("assignment2", "hurdat.rds"))

2.2 Data Visualization

The data visualization has several exciting features. Because the data set was already format-
ted into an analysis-ready structure, this part of the assignment focuses only on visualizing a
given storm ID. It begins with defining and loading the packages used later in the code. The
leaflet and webshot2 packages were new to me. Leaflet allows me to create an interactive map,
similar to folium in Python.

Since I am rendering my report to both HTML and PDF, I needed different approaches for
each format. In HTML, I was able to embed the leaflet map directly as an htmlwidget. For
PDF output, I learned to use conditional content so the widget only displays in HTML, and
a static snapshot (generated with webshot2) is included in the PDF. For both versions, I
provided a figure caption and alt text to improve clarity and accessibility.

To add more complexity and depth to the track visualization, I incorporated a color scale
representing wind speed. This makes the map more informative and highlights storm intensity
changes along its path. I think interactive widgets can serve as a useful precursor to fully
developed applications for data visualization. I am excited about the continued advancements
in interactive figures which allow non-coders to explore and interact with data in more mean-
ingful ways. Although I did not implement dynamic selection in the HTML rendering of this
assignment, I looked into some of the latest developments in Quarto Dashboards. For now,
I set up an optional user input similar to what we did in Python. When the R code is run
interactively, the user is prompted to provide a storm name; otherwise, a default storm ID is
used to ensure the code still runs smoothly during rendering.

Check if libraries are installed; install if not.
if (!require("pacman")) install.packages("pacman")
pacman: :p_load(here, stringr, leaflet, webshot2, dplyr)

16

https://quarto.org/docs/dashboards/interactivity/

default_name = "AL092021"

If interactive (R console / RStudio), ask the user
if (interactive()) {
storm_id <- readline(

prompt = pasteO("Enter a storm ID using ALnnyyy format [default = ", default_name, "]:
)
if (storm_id == "") storm_id <- default_name
} else {

If running non-interactively (e.g., knitting to PDF/HTML), use default
storm_id <- default_name

¥

Read in data
hurdat_ar <- readRDS(here("assignment2", "hurdat.Rds"))

Create a reusable function
track_storm <- function(dat, storm_id, zoom = 4,
init_location = c(20, -50)) {
Filter and order the points for the selected storm
storm <- dat |>
filter(storm_id == !!storm_id, !is.na(lat), 'is.na(lomn)) |>
mutate(status = str_trim(status)) |>
arrange (yyyymmdd, hhmm)

if (nrow(storm) == 0) stop("No points found for this storm_id.")

Build popup: date + time + status (e.g., "1851-06-25 00:00 - HU")
popup_txt <- paste0(

format (storm$yyyymmdd, "%Y-Ym-%d"), " ", storm$hhmm,

" - " storm$status

Definecolor range

pal <- colorNumeric(
palette = "Y10rRd", # yelloe = weak winds, red = strong winds
domain = storm$wind # The range of wind speeds

Create map
m <- leaflet(storm) |>

17

}

addTiles() [>
addPolylines(lng = ~lon, lat = ~lat, color = "blue",
weight = 2.5, opacity = 1) [>

addCircleMarkers (
Ing = ~lon,
lat = ~lat,
color = ~pal(wind), # marker color by wind
radius = 5, # size of marker

stroke = FALSE,

fillOpacity = 0.8,

popup = ~pasteO(format(yyyymmdd, "%Y-%m-%d"), " ", hhmm,
"
Wind: ", wind, " kt",
"
Status: ", status)

) 1>

addLegend (
"bottomright",
pal = pal,
values = ~wind,
title = "Wind (kt)",
opacity = 1

)

file_html <- here("assignment2", pasteO(storm_id, "_map.html"))
htmlwidgets: :saveWidget(m, file_html, selfcontained = TRUE)
m

leaflet_png <- function(m) {

file_png = here("assignment2", "hurricane_tracks_map.png")

html tmp <- here("assignment2", "hurricane_tracks_map_tmp.html")

htmlwidgets: :saveWidget (m, html_tmp, selfcontained = TRUE)

webshot2: :webshot (html_tmp, file = file_png, vwidth = 1400,
vheight = 900, zoom = 1)

return(file_png)

m <- track_storm(hurdat_ar, storm_id = storm_id)
png_file <- leaflet_png(m)
knitr::include_graphics(png_file)

18

Bermuda

Figure 2.1: Static storm track AL092021 (PDF).

2.3 Links to Colab and GitHub

Assignment 2 Google Colab
Quarto book chapter on GitHub

19

https://colab.research.google.com/drive/1MdjvGOw5rhL_Im-qn8PCf1-ji--MtgWw
https://arios101-fiu.github.io/EVR-5086-Assignements/assignment2/rios_evr5086_hw2.html

3 Assignment 3 - Normal distributions and the
Galton board

EVR-5086 Fall 2025

Assignment 3 - Normal distributions and the Galton board

For this assignment follows the readings and exercises in “Risk Analysis in the Earth Sciences:
A Lab Manual with Exercises in R” Version 3.

3.1 Exercise 1

In this exercise I modified the provided lab0_sample.R to produce a histogram based on
10* samples from a normal distribution with mean 5 and standard deviation 2 Figure 3.1.
I then produced two histograms for the standard normal distribution which has a mean 0
and standard deviation 1. The first was based on 10* samples (Figure 3.2) and the second
one included only 10 samples (Figure 3.3). In addition to the modifications outlined by the
exercise, I included a legend on each plot, and I dynamically read sample size into the y-axis
label. T organized my code using variable names that differed by the subscript (1-3) associated
with each of the three respective histograms. A main difference between Figure 3.1 and the
other two histograms is how the distribution is centered around the mean of 5 and has a wider
range of values compared to Figure 3.2. These differences are driven by the differences in the
respective means and standard deviations. Since the first two histograms have a large number
of samples being drawn from the normal distribution function rnorm(), they resulting plots
show the expected bell curve shape. However, since the third histogram (Figure 3.3) is based
on only 10 samples, we do not see the definition of the bell curve at all. When only using 10
samples, the standard normal distribution results in a smaller range of values than it did with
10* samples. When the number of samples is large, there are more opportunities for values to
be sampled. I explore the related probability density in the next part of this exercise.

20

In the final part of this first exercise, I plotted the formula for the normal distribution provided
in EVR-5086 Assignment 3 (Figure 3.4). I noticed a small difference between the equation
in the assignment and the one on Wikipedia, which I included in the same plot as a second
curve in blue. Overall, exploring these formulas helped me better understand how normal
distribution’s characteristic symmetric bell curve shape is driven in its formula by e*2. As
shown in the examples in Figure 3.4 larger the value in the exponential term of the natural
log, the wider the distribution. In this exercise I do not need to use the full formula that
is on Wikipedia because, when mean is 0 and the standard deviation is 1, some constant
multipliers simplify to 1. In the R code, I used text() and expression() to include color-coded
mathematical expressions in the top-left corner of the plot.

3.1.1 Modify code from lab0_sample.R

Modified code from labO_sample.R

Set values

num_1 <- 1074 # number of random draws

mu_1 <- 5 # mean of normal distribution to draw from
sigma_1 <- 2 # standard deviation of normal distribution

Sample randomly from a normal distribution
x_1 <- rnorm(n = num_1, mean = mu_1, sd = sigma_1)

Plot the results as a histogram
hist_1 <- hist(
% _dlg # Vector for the histogram
main = "Adyan Rios", # Set title to my name
xlab = "Variable",
ylab = pasteO("Frequency (n = ", sprintf("%.2e", num_1), ")"),
xaxt = "n" # Turn off x-axis values

Add custom x-axis ticks
axis(side = 1, at = hist_1$breaks)

Indicate mean
abline(v = mu_1, 1lwd = 2, col = "red")

Indicate mean + SD

abline(v = c(mu_1 + sigma_1, mu_1 - sigma_1),
lwd = c(2), 1ty = 2, col = "blue")

21

Add a legend
legend("topleft", legend = c("Mean", "Mean + SD"), lwd = 2,
col = c("red", "blue"), 1ty = c(1, 2), bty = "n")

Adyan Rios
?
T I
Y o —— Mean
S ® 7 -- MeantSD
- —
I |
E
>
O Q|
$ 3
=)
i'j o [] I
C T T 1T T 1 I I T T 1T T 1

-3 -1 1 2 3 456 7 89 11 13

Variable

Figure 3.1: Histogram generated from 1.00e4-04 random samples from a normal distribution
associated with mean 5 and standard deviation 2. The mean is indicated by a
vertical red line. Blue dashed vertical lines show the mean minus the standard
deviation and the mean plus the standard deviation.

3.1.2 The Standard normal distribution

Set values

num_2 <- 1074 # number of random draws

mu_2 <- 0 # mean of normal distribution to draw from
sigma_2 <- 1 # standard deviation of normal distribution

Sample randomly from a normal distribution
X_2 <- rnorm(n = num_2, mean = mu_2, sd = sigma_2)

Plot the results as a histogram

22

hist_2 <- hist(

xX_2, # Vector for the histogram

main = "The Standard normal distribution", # Set title

xlab = "Variable",

ylab = pasteO("Frequency (n = ", sprintf("%.2e", num_2), ")"),
xaxt = "n" # Turn off x-axis values

Add custom x-axis ticks
axis(side = 1, at = hist_2%breaks)

Indicate mean
abline(v = mu_2, lwd = 2, col = "red")

Indicate mean + SD
abline(v = c(mu_2 + sigma_2, mu_2 - sigma_2),
lwd = c(2), 1ty = 2, col = "blue")

Add a legend

legend("topleft", legend = c("Mean", "Mean + SD"), lwd = 2,
col = c("red", "blue"), 1ty = c(1, 2), bty = "n"

23

The Standard normal distribution

’{F

< I I

v o —— Mean : :

S 8 7 -- MeantSD —

Fi —

1

c _

>

) o

>

O

(O] o -

C T 1 1 1r1T 1T 1 17 1T @ 1T 1T71TT7TT°1
-4.5 -3.0 -1.5 00 1.0 20 30 40

Variable

Figure 3.2: Histogram generated from 1.00e4+04 random samples from a normal distribution
associated with mean 0 and standard deviation 1. The mean is indicated by a
vertical red line. Blue dashed vertical lines show the mean minus the standard
deviation and the mean plus the standard deviation.

3.1.3 The Standard normal distribution with only 10 samples

Set values

num_3 <- 10 # number of random draws

mu_3 <- 0 # mean of normal distribution to draw from
sigma_3 <- 1 # standard deviation of normal distribution

Sample randomly from a normal distribution
x_3 <- rnorm(n = num_3, mean = mu_3, sd = sigma_3)

Plot the results as a histogram
hist_3 <- hist(

x_3, # Vector for the histogram

main = "The Standard normal distribution", # Set title

xlab = "Variable",

ylab = pasteO("Frequency (n = ", sprintf("%.2e", num_3), ")"),

24

xaxt = "n" # Turn off x—axis values

Add custom x-axis ticks
axis(side = 1, at = hist_3$breaks)

Indicate mean
abline(v = mu_3, lwd = 2, col = "red")

Indicate mean + SD
abline(v = c(mu_3 + sigma_3, mu_3 - sigma_3),
lwd = c(2), 1ty = 2, col = "blue")

Add a legend

legend("topleft", legend = c("Mean", "Mean + SD"), lwd = 2,
col = c("red", "blue"), 1ty = c(1, 2), bty = "n")

The Standard normal distribution

— Méan :
mn - - - Mgan*xSD I
I I

Frequency (n = 1.00e+01)
2
|

I I I I
-1.5 -1.0 -0.5 0.0 0.5 1.0 15

Variable

Figure 3.3: Histogram generated from 1.00e+01 random samples from a normal distribution
associated with mean 0 and standard deviation 1. The mean is indicated by a
vertical red line. Blue dashed vertical lines show the mean minus the standard
deviation and the mean plus the standard deviation.

25

3.1.4 Plotting the normal distribution from Wikipedia

a <- seq(-3, 3, length.out = 100)

plot(a, 1 / (sqrt(2 * 3.14)) * exp(-(a~2)), col = "red", type = "o",

main = "Probability density function",
xlab = "Variable x", # Label x-axis
ylab = "f(x)") # Label x-axis

points(a, 1 / (sqrt(2 * 3.14)) * exp(-(a”2) / 2), col = "blue")

text (-2, 0.35, expression(f(x) == 1 / (sqrt(2 %*% 3.14)) * exp(-(x72) / 2)),
col "blue", cex = 0.6)

text (-2, 0.3, expression(f(x) == 1 / (sqrt(2 %*% 3.14)) * exp(-(x72))),
col "red", cex = 0.6)

Probability density function

f(x) =1/ (2x3.18)exp(- () [2)
f(x) =1/ (2x3.18)exp(- (%))

q

<
N

f(x)
0.0 0.1 0.2 03 04
I

Variable x

Figure 3.4: Probability density plot for the normal distribution. The standard normal distribu-
tion (mean 0 and standard deviation 1) is shown by the curve in blue. Meanwhile,
a normal distribution is also plotted in red with a slightly simplified equation.

26

3.2 Exercise 2

In this part of the assignment, I plotted sea-level data and temperature rates of change over
time. To save time when re-running the code, I added if statements that only download the
data if they do not exist locally.

I ran into a couple early challenges. First, working with .txt files was a little challenging
because I am used to .csv files, which usually already have descriptive column names and
straightforward data frame structures. In trying a few options for how to read in the sea level
data, I learned how to automatically ignore the comments beginning with “%” which streamline
my code so I did not have to hard-code the lines to read. The next challenge was the way the
time variable. I had not worked with decimal dates before, but I used date decimal() from the
lubridate to extract the dates into a format that was easier for me to interpret In reproducing
and saving the three-panel plot (Atmospheric CO (top), global mean surface-air temperature
anomaly (middle), and global mean sea level anomaly (bottom)), I followed the code provided
in labl_sample.R. I then reproduced it in a multi-panel plot that renders directly in this
document (Figure 3.5).

To answer how much atmospheric carbon dioxide concentrations, global mean temperatures,
and sea levels changed between 1900 and the early part of the present century I subset each
data set into “early” (1900-1910) and “recent” (2000-2010) and compared the mean values. The
atmospheric carbon increased by 25.64 ppm (73%). Temperature and sea level both fluctuate
between seasonally, but similar to the change seen for CO2, they also increased over those 100
years. The mean temperature increased by 0.93 degrees, and the mean sea level increased by
194 mm.

The last part of Exercise 2 involved calculating the rates of temperature change. I checked the
data source to clarify why I was using column 14 and why the value was being divided by 100.
I learned that the anomalies are stored as hundredths of a degree. Also, column 14 reflects
information summarized across the 12 months, which are also provided in separate columns.
Initially, I plotted the rate of change on the same axis as the original data series (Figure 3.6)
using a red line for the rate and adding a legend. I also produced separate panels to more
easily compare them (Figure 3.7). The results show that prior to 1970 there are fewer years
with extreme increases or decreases. After the 1970, the dips and peaks are consistently more
extreme in both direction. Although there are a few strong dips in the later half of the time
series, summing over the values, indicated that the increases are more extreme overall. This
corresponds with the upward trend observed in the global mean temperature anomaly plot,
where the cyclical nature of the series is also evident.

3.2.1 Sea level anomaly data

27

Check if libraries are installed; install if not.
if (!require("pacman")) install.packages("pacman")
pacman: :p_load(here, lubridate, ggplot2)

Create a folder for storing downloaded files
if (!file.exists(here("assignment3/data"))) {
dir.create(here("assignment3/data"))

}

Download and read in the sea level anomaly data from Jevrejeva et al. (2014)
if (!file.exists(here("assignment3/data/jevrejeva2014_gmsl.txt"))) {
download.file(
"https://psmsl.org/products/reconstructions/gslGPChange2014.txt",
here("assignment3/data/jevrejeva2014_gmsl.txt")
)
}

Read in and ignore lines with comments (starting with %)
sl.data <- read.table(here("assignment3/data/jevrejeva2014_gmsl.txt"),
comment = "%")

Assign column names
colnames(sl.data) <-
c("time", "rate_mm", "rate_err_mm", "gmsl mm", "gmsl err_mm")

Format date
sl.data$date_decimal <- lubridate::date_decimal(sl.data$time)

Conditionally download files used in labl_sample.R
if (!file.exists(here("assignment3/data/co2_mm_mlo.txt"))) {
download.file(
"ftp://aftp.cmdl.noaa.gov/products/trends/co2/co2_mm_mlo.txt",
here("assignment3/data/co2_mm_mlo.txt")
)
}

if (!file.exists(here("assignment3/data/law2006.txt"))) {
download.file(
"ftp://ftp.ncdc.noaa.gov/pub/data/paleo/icecore/antarctica/law/1aw2006.txt",
here("assignment3/data/1law2006.txt")
)

28

if (!file.exists(here("assignment3/data/GLB.Ts+dSST.txt"))) {
download.file(
"http://data.giss.nasa.gov/gistemp/tabledata_v3/GLB.Ts+dSST.txt",
here("assignment3/data/GLB.Ts+dSST.txt")
)
}

Read in the CO02 data

loa.co2.data <- read.table(here("assignment3/data/co2_mm_mlo.txt"),
skip = 57, header = FALSE)

law.co2.data <- read.table(here("assignment3/data/1aw2006.txt"),
skip = 183, nrows = 2004,
header = FALSE)

Read in the GISS temperature data
begin.rows <- c(9, 31, 53, 75, 97, 119, 141)
num.rows <- c(19, 20, 20, 20, 20, 20, 14)
temp.data <- matrix(NA, nrow = sum(num.rows), ncol = 20)
temp.datal[l: num.rows[1],] <- as.matrix(
read.table("data/GLB.Ts+dSST.txt", skip = begin.rows[1],
nrows = num.rows[1], header = FALSE)
)
for (i in 2: length(begin.rows)) {
temp.datal[(sum(num.rows[1: i- 1])+ 1): sum(num.rows[1: i]),] <-
as.matrix(read.table("data/GLB.Ts+dSST.txt", skip = begin.rows[i],
nrows = num.rows[i], header = FALSE))

Create a folder to store figues as pdfs
if (!file.exists(here("assignment3/figures"))) {
dir.create(here("assignment3/figures"))

¥

Plot

pdf (here("assignment3/figures/labl_sample_plot2.pdf"),
width = 4.5, height = 6)

par (mfrow = c(3, 1), cex = 0.66)

plot(law.co2.datal, 1], law.co2.datal, 6], type = "1", xlim = c(1900, 2020),
ylim = c(290, 400), bty = "n", xlab = "Time (yr)",
ylab = "Atmospheric carbon dioxide (ppm)")

29

lines(loa.co2.datal, 3], loa.co2.datal, 5], type = "1", col = "blue")
legend("topleft", c("Law Dome ice core record", "Mauna Loa measurements"),
col = c("black", "blue"), lwd = 1, bty = "n")
plot(temp.datal, 1], temp.datal, 14]/ 100, type = "1", xlim = c(1900, 2020),
ylim = c(-0.6, 0.7), bty = "n", xlab = "Time (yr)",
ylab = "Global mean temperature anomaly (K)")
plot(sl.data$time, sl.data$gmsl_mm , type = "1", xlim = c(1900, 2020),
ylim = c(-50, 200), bty = "1", xlab = "Time (yr)",
ylab = "Sea level anomoly (mm)")

Close the device and make the return value invisible
invisible(dev.off())

Re run code to print in Quarto html and pdf

C02
plot(law.co2.datal, 1], law.co2.datal, 6],
type = "1", xlim = c(1900, 2020), ylim = c(290, 400),
bty = "n", xlab = "Time (yr)", ylab = "Atmospheric C02 (ppm)")
lines(loa.co2.datal, 3], loa.co2.datal, 5], type = "1", col = "blue")
legend("topleft",
c("Law Dome ice core record", "Mauna Loa measurements"),
col = c("black", "blue"), lwd = 1, bty = "n")

Temperature anomaly

plot(temp.datal, 1], temp.datal, 14] / 100,
type = "1", xlim = c(1900, 2020), ylim = c(-0.6, 0.7),
bty = "n", xlab = "Time (yr)",
ylab = "Global mean temperature anomaly (K)")

Sea level anomaly

plot(sl.data$time, sl.data$gmsl_mm,
type = "1", xlim = c(1900, 2020), ylim = c(-50, 200),
bty = "n", xlab = "Time (yr)",
ylab = "Sea level anomaly (mm)")

3.2.2 labl_sample.R Question 1

By how much have atmospheric carbon dioxide concentrations, global mean temperatures, and
sea levels changed between 1900 and the early part of the present century?

30

3
>
©
£ §
g o —— Law Dome ice core record S 8
o~ 3 —— Mauna Loa measurements (]
(@] 2 o~
O ° S o
o [
8 @ e
& g 9
o (=3 =
£ B3 g «
< T T T T T T 1 % T I T T T T T 1
1900 1920 1940 1960 1980 2000 2020 8 1900 1920 1940 1960 1980 2000 2020
0]
Time (yr) Time (yr)
(a) Atmospheric CO2 (b) Global mean temperature anomaly
3
E o
> [T9)
= -
£
o
g 3
[}
=
K7
8 o
&7

[T T T T T 1
1900 1920 1940 1960 1980 2000 2020

Time (yr)
(¢) Sea level anomaly (mm)

Figure 3.5: Atmospheric CO (top), global mean surface-air temperature anomaly (middle),
and global mean sea level anomaly (bottom), 1900-—~2015.

31

Create filtered subsets of each data set to calculate differences

early_co2 <- law.co2.data[law.co2.data$Vl >= 1900 & law.co2.data$Vl < 1910,]
recent_co2 <- law.co2.data[law.co2.data$Vl >= 2000 & law.co2.data$Vi < 2010,]
early_temp <- temp.data[temp.datal, 1] >= 1900 & temp.datal[, 1] < 1910,]
recent_temp <-temp.datal[temp.datal, 1] >= 2000 & temp.datal, 1] < 2010, 1]
early_sea <- sl.datal[floor(sl.data$time) >= 1900 & floor(sl.data$time) < 1910, 1]
recent_sea <- sl.data[floor(sl.data$time) >= 2000 & floor(sl.data$time) < 2010,]

Calculate percent changes (c) or percent differences (pc)
pc_co2 <- round((mean(recent_co2[, 6]) - mean(early_co2[, 6])) /
mean (early_co2[, 6]), 4)*100 #25.64 percent
c_co2 <- mean(recent_co2[, 6]) - mean(early_co2[, 6]) #73.2 percent
c_temp <- mean(recent_temp[, 14]/100) - mean(early_temp[, 14]/100) #0.93 degrees
c_sea <- mean(recent_sea$gmsl_mm) - mean(early_sea$gmsl_mm) #194 mm

3.2.3 Rates of temperature change

Rate of change
dT_dt_1 <- diff(temp.datal, 14])/100 / diff(temp.datal, 1])
midpoint_t <- temp.data[-length(temp.datal[, 1]), 1] + .5

GISS records sometimes use 100 to represent the average temperature
par(mar = c(5, 7, 4, 2) + 0.1)
plot(temp.datal[, 1], temp.datal, 14] / 100, type = "1", xlim = c(1900, 2020),
ylim = ¢(-0.6, 0.9), bty = "n", xlab = "Time (yr)",
ylab = "Global mean temperature anomaly (K)
and annual rate of change", lwd = 1.5)
lines(midpoint_t, dT_dt_1, type = "1", col = "red", lwd
Add a legend
legend("topleft",
legend = c("Global mean temperature anomaly (K)",
"Annual rate of temperature change"),
lwd = 1.5, col = c("black", "red"), lty = 1, bty = "n", cex = 0.8)

1.5)

Second y-axis for the rate

plot(temp.datal, 1], temp.datal, 14] / 100,

type = "1", xlim = c(1900, 2020),

ylim = c(-0.6, 0.7), bty = "n", xlab = "Time (yr)",

ylab = "Global mean temperature anomaly (K)", lwd = 1.5)
par(new = TRUE) # Prepare for second axis

32

plot(midpoint_t, dT_dt_1, type = "1",

xlim = ¢(1900, 2020), ylim = c(-0.5, 0.5),

col = "red", xaxt = "n", yaxt = "n", xlab = "", ylab = "", , lwd = 1.5)
axis(side = 4, col = "red", col.axis = "red")

mtext("Annual rate of change", side = 4, line = 3, col = "red")

I I I I I I I
1900 1920 1940 1960 1980 2000 2020

—
<
33
53
% 5 —— Global mean temperature anomaly (K)
05 o —— Annual rate of temperature change
= D) o
T ©
G) S
g"_:,“ o _
(@)

c
=
= To)
C O :
L C o -
g ®© '
©
o
k)
@)

Time (yr)

Figure 3.6: Overalaid plots of global mean temperature anomaly (black) and its annual rate
of change (red).

plot(temp.datal, 1], temp.datal, 14] / 100, type = "1", xlim = c(1900, 2020),
ylim = c(-0.6, 0.7), bty = "n", xlab = "Time (yr)",
ylab = "Global mean temperature anomaly (K)", lwd

1.5)
plot(midpoint_t, dT_dt_1, type = "1", col = "red", lwd = 1.5,

xlim = c(1900, 2020),, ylim = c(-0.3, 0.3), bty = "n",
xlab = "Time (yr)", ylab = "Annual rate of change")

33

<
>
©
5
O
8 o 7
&) —
2 N
S o 7]
Q —
£ o
g 9 -
c _
& ©
E 9?7 | | | | | |
©
8 1900 1920 1940 1960 1980 2000 2020
o
Time (yr)
(a) Global mean temperature anomaly
(92
S o
c
T —
S o
"6 o
'.q_-‘) —]
[0 i
= o
@© I
=) —
c
C (92
< ? —

I I I I I I I
1900 1920 1940 1960 1980 2000 2020

Time (yr)

(b) Annual rate of change

Figure 3.7: Global mean temperature anomaly (black) and its annual rate of change (red).

34

3.3 Exercise 3

To prepare for this exercise, I included example code that was provided in the lab manual. I
left it in because I reuse parts of it later, including the sampling examples to identify resulting
“Galton Board” bins, and the code to generate histograms and Q-Q plots. For the actual
exercise further down in this chapter, I created a function I could reuse for each variation
across different number of balls. Using the function with intentional return vectors allowed
me not to worry about clearing existing variables or figures from memory. I ran the function
with 10 bins, and with 10, 20, 30, 100, and 1074 balls. With 10 and 20 balls the histogram
and Q-Q plot do not look normal. At about 30 balls the histogram and Q-Q plot begin to look
approximately normal (Figure 4.3). Once the number of balls is large, as in the runs with 102
(Figure 4.4) and very large with 10% balls (Figure 4.5), the histogram looks normal but the
Q-Q plot shows a slight departure. This may relate to the discrete and bounded nature of the
bin outcomes, while the Q-Q plot may be better suited for continuous data.

3.3.1 Implement the Galton Board

Check if libraries are installed; install if not.
if (!require("pacman")) install.packages("pacman")
pacman: :p_load(animation)

Set number of balls and rows following the example code
n.balls <- 200
n.rows <- 15

ani.options(nmax = n.balls + n.rows - 2)
quincunx(balls = n.balls, layers = n.rows)

Follow example code to identify the resulting bin
path <- sample(x = c(-0.5, 0.5), size = (n.rows - 1), replace = TRUE)
print (path)

(1] -0.5 -0.5 -0.5 -0.5 -0.5 0.5 0.5 0.5 -0.5 -0.5 -0.5 0.5 -0.5 0.5

bin <- sum(path)
print(bin)

(1] -2

35

Example of a for loop

n.times <- 3

for (i in 1:n.times) {
print (i)

3

(1] 1
(1] 2
[1] 3

Another example of a for loop
n.times <- 5
output <- rep(l, n.times)
for(i in 3:n.times){

output [i] <- sum(output[(i-2):(i-1)1)
}
print (output)

[1] 11235

Example of how to make the Q-Q plot
norm.vals <- rnorm(100, mean = 5, sd = 3)
qgqnorm(norm.vals)

gqline(norm.vals)

36

Sample Quantiles

10

Normal Q-Q Plot

Theoretical Quantiles

37

4 Exercise

e Use comments to explain what the code does and who wrote it

¢ Clears existing variables from memory and close open figures

e Set values for the number of balls to drop and the number of rows of pins
¢ Create vector output, initially populated with NAs

e Use a loop to run through values (1:n.balls), determine and store results
e Make a histogram of outputs

Develop a function to conduct the exercise
run_board <- function(n_rows, n_balls){
output <- rep(NA, n_balls) # Create vector for output
for (i in 1: n_balls){ # Loop over given number of balls
path_i <- sample(x = c(-0.5, 0.5),size = (n_rows - 1), replace = TRUE)
output [i] <- sum(path_i) # Sum over samples to obtain bin
}
return(output)

3

Repeatedly run the function with different n_balls
runb <- run_board(n_rows = 10, n_balls = 10)

hist(run5, main = "",

xlab = "Bin", ylab = "Frequency") # Create histogram
qgnorm(run5, main = "") # Create Q-Q plot
qqline(run5, col = "red", lwd = 2)

Repeatedly run the function with different n_balls
run5 <- run_board(n_rows = 10, n_balls = 20)

hist(run5, main = "",

xlab = "Bin", ylab = "Frequency") # Create histogram
qgnorm(runb, main = "") # Create Q-Q plot
qqline(runb, col = "red", lwd = 2)

38

Frequency

Frequency

™ ¢}
3 N
*E' [¢] [e]
o~ g o
(o4 o_~0
- % °©
% [0} o]
o T
o o (6] 6]
T T T T T 1 T T T T T T T
-2 -1 0 1 2 3 -15 -1.0 -0.5 0.0 0.5 1.0 1.5
Bin Theoretical Quantiles
(a) Histogram (b) Q-Q Plot

Figure 4.1: Results of replicating the Galton board dynamics with 10 rows and 10 balls.

¢}
® é N o
2 _
@ g OO0 O
o -
~ o 000000
g -
N
—— & o
o o O o
T T T T T T 1 T T T T T
-3 -2 -1 0 1 2 3 -2 -1 0 1 2
Bin Theoretical Quantiles
(a) Histogram (b) Q-Q Plot

Figure 4.2: Results of replicating the Galton board dynamics with 10 rows and 20 balls.

39

Repeatedly run the function with different n_balls
runb <- run_board(n_rows = 10, n_balls = 30)

hist(run5, main = "",

xlab = "Bin", ylab = "Frequency") # Create histogram
ggnorm(runb, main = "") # Create Q-Q plot
gqline(runb5, col = "red", lwd = 2)

)
S 5 ™
= ~ -
g I~ & 000 O
[} p=} - —
S © (o4
g 2 °
L < g -
~ ,—l_ & o | 000
o ! o __o
T T T T T T T l T T T T T
-3 -2 -1 0 1 2 3 4 -2 -1 0 1 2
Bin Theoretical Quantiles
(a) Histogram (b) Q-Q Plot

Figure 4.3: Results of replicating the Galton board dynamics with 10 rows and 30 balls.

Repeatedly run the function with different n_balls
runb <- run_board(n_rows = 10, n_balls = 1072)

hist(run5, main = "",
xlab = "Bin", ylab = "Frequency") # Create histogram
qgnorm(runb, main = "") # Create Q-Q plot

qqline(runb, col = "red", lwd = 2)

Repeatedly run the function with different n_balls
runb5 <- run_board(n_rows = 10, n_balls = 1074)

hist(runb, main = "",
xlab = "Bin", ylab = "Frequency") # Create histogram
ggnorm(runb, main = "") # Create Q-Q plot

qqline(runb, col = "red", lwd = 2)

40

20

0123
|

Frequency

0 5 10
-2

|
o

Sample Quantiles

Bin Theoretical Quantiles
(a) Histogram (b) Q-Q Plot

Figure 4.4: Results of replicating the Galton board dynamics with 10 rows and 1072 balls.

< @O O
] @ L)
> =N -—
s g
S o o o
o o [}
£ g 2 o
- g ! -
o | i 5t] =
© T T T T = 1 I 2 T T T T
-4 -2 0 2 4 -4 -2 0 2 4
Bin Theoretical Quantiles
(a) Histogram (b) Q-Q Plot

Figure 4.5: Results of replicating the Galton board dynamics with 10 rows and 1074 balls.

41

4.1 Exercise 4

Based on the histograms and Q—Q plots, the waiting time between Old Faithful eruptions
is not approximately normally distributed (Figure 5.5). The histogram is clearly bimodal,
and the Q—Q plot shows systematic departures from the red reference line, indicating a lack
of correspondence between the theoretical normal quantiles and the sample quantiles. By
contrast, based on the shape of the histogram and the close alignment with the red line in

the Q—Q plot in Figure 4.7, the sepal length data for Iris setosa appears to be approximately
normally distributed.

4.1.1 Generate histograms and Q-Q plots

4.1.1.1 Old Faithful eruptions

Histogram of waiting times

hist(faithful$waiting,
main = "Histogram of Waiting Times",
ylab = pasteO("Frequency (n = ", length(faithful$waiting), ")"),
xlab = "Waiting time between eruption (minutes)")

Q-Q plot of waiting times
qgnorm(faithful$waiting,

main = "Q-Q Plot of Waiting Times")
qqline(faithful$waiting, col = "red", lwd = 2)

Histogram of Waiting Times Q-Q Plot of Waiting Times

8 83 g 8
1 % -
(=
> 8 & 2 -
c Q
g I
o o
g = & B
w o o

M T T T T T 1 \

40 50 60 70 80 90 100 -3

Waiting time between eruption (minutes) Theoretical Quantiles
(a) Histogram (b) Q-Q Plot

Figure 4.6: Histogram and Q-Q plot for the waiting time between eruptions of the Old Faithful
geyser in yellowstone national park, WY.

42

4.1.1.2 Sepal length of setosa irises

Histogram of waiting times

hist(iris3[, "Sepal L.", "Setosa"],
main = "Histogram of Sepal Length",
ylab = pasteO("Frequency (n = ",
length(iris3[, "Sepal L.", "Setosa"]), ")"),

xlab = "Sepal length in cm")

Q-Q plot of waiting times

qgnorm(iris3[, "Sepal L.", "Setosa"l],
main = "Q-Q Plot of Sepal Length")
qqline(iris3[, "Sepal L.", "Setosa"l, col = "red", lwd = 2)
Histogram of Sepal Length Q-Q Plot of Sepal Length
L,Or: -

55
|
o
O

Sample Quantiles
5.0

Frequency (n
0 2 46 8

1 |

4.5
o
o

[T 1 I T T T

4.5 5.0 5.5 -2 -1 0 1
Sepal length in cm Theoretical Quantiles
(a) Histogram (b) Q-Q Plot

Figure 4.7: Histogram and Q-Q plot of sepal length of setosa irises in cm.

4.2 Links to Colab and GitHub

Assignment 2 Google Colab
Quarto book chapter on GitHub

43

https://colab.research.google.com/drive/1B3U0Re5mH4aCAfyJ31baLeZROpBaTjkc
https://arios101-fiu.github.io/EVR-5086-Assignements/assignment3/rios_evr5086_hw3.html

5 Assignment 4

EVR-5086 Fall 2025

Assignment 4

To complete this assignment in R, I used the following packages:

 here: here() enables easy file referencing

e dplyr: functions for data manipulation

e tidyr: functions for reshaping data

o flextable: formatting tables

o geplot2: for creating plots

e moments: functions for kurtosis and skewness

o fBasics: dagoTest() for the D’Agostino normality test

Check if libraries are installed; install if not.
if (!require("pacman")) install.packages("pacman")
pacman: :p_load(here, dplyr, flextable, ggplot2, tidyr, moments, fBasics)

5.1 Exercise 1

To start, I read in MIA_J-D_T Precip_inches.csv and assigned descriptive column names.
Instead of computing the time series for one month at a time, I used dplyr::mutate() to divide
each month’s column by the total column. This results in a data frame of the fraction of the
annual total by year and month. For the remainder of the assignment, I focus on the month
of April. Figure 5.1 shows the fraction of annual rainfall in April in Miami, Florida, from 1906
to 2022. Table 5.1 reports the descriptive statistics, rounded to four significant digits, for the
fraction of annual rainfall occurring in the month of April.

44

Read in and subset MIA_J-D_T_Precip_inches.csv
mia_rain <- read.csv(here("assignment4", "data", "MIA_J-D_T_Precip_inches.csv"),
header = FALSE)

Add descriptive column names
names(mia_rain) <- c("year", "jan", "feb", "mar", "apr", "may", "jun",
lljul"’ llaugll’ "S@p", lloctll’ llnovll’ "deC", “total")

Compute monthly fraction by dividing all months by the total
mia_rain fraction <- mia_rain %>%
mutate (across(-c("year", "total"), ~ round(. / total, 4)))

#Plot the time series for April's fraction of the annual total for each year
ggplot(mia_rain_fraction, aes(x = year, y = apr)) +
geom_line() +
labs(
title = "Fraction of annual rainfall during April for Miami, Florida",
subtitle = "Comparison between 1906 and 2022",
x = "Year",
y = "Fraction of annual rainfall during April"

45

Fraction of annual rainfall during April for Miami, Florida

Comparison between 1906 and 2022
0.3-

o
N
1

o
=
1

Fraction of annual rainfall during April

©
o
1

1925 1950 1975 2000 2025
Year

Figure 5.1: Fraction of annual rainfall during the month of April for the City of Miami, Florida,
from 1906 to 2022.

46

5.2 Exercise 2

Next, ahead of reshaping the data, I created factor levels to be able to rearrange the data
by month of the year and computed the number of unique years in the data. In preparing
the data for analysis, I reformatted the data, assigned factor levels, computed the logl0-
transformed data. In using pipes to reshape and add variables to the data, I reduced the
number of intermediate objects created. Similarly with group_by() and summarize(), I was
able to calculate various summary statistics at the same time for both the fraction and the
log10 fraction of Miami rainfall by month.

The comparison of the histograms and Q-Q plots in Figure 5.2 show that the log10 transformed
data appears more normal than the original data, but still show departures from the Q-Q
line.

Prep month levels for efficient ordering
month_levels <- c("jan", "feb", "mar", "apr", "may", "jun",
|Ijulll IIaugll “Sep" IIOCt n Ilnovll "deC")

Calculate n
n_years <- n_distinct(mia_rain_fraction, "year")

Prep data for upcoming analyses
mia_rain_fraction_tidy <- mia_rain_fraction |[>
Remove total
select(-total) |>
Reformat to tidy format (long)
pivot_longer(

cols = lyear,

names_to = "month",

values_to = "fraction"
) 1>

Log transform monthly fractions and define month factor levels
mutate (
month = factor(month, levels = month_levels, ordered = TRUE),
logl0_fraction = loglO(fraction)
) 1>
Reformat to tidy format (long)
pivot_longer(

cols = !c(year, month),
names_to = "stat",
values_to = "values"

) 1>

Sort by stat and year

47

arrange(stat, year, month)

Compute descriptive statistics for mia_rain_fraction
mia_rain_fraction_summary <- mia_rain_fraction_tidy |[>
Run calculation on unique combinations of year and stat
group_by (month, stat) [>
Calculate summary stats
summarise (min = round(min(values), 4),
ql = round(quantile(values, 0.25), 4),
median = round(median(values), 4),
mean = round(mean(values), 4),
g3 = round(quantile(values, 0.75), 4),
max = round(max(values), 4),
variance = round(var(values), 4),

sd = round(sd(values), 4),
sk = round(skewness(values), 4),
ku = round(kurtosis(values), 4),

.groups = "drop") |>
Sort data by stat and month
arrange (stat, month)

Rearrange the summary statistics to print nicely for just April
apr_summary <- mia_rain_fraction_summary |>

Pivot the data so that the summary statistics have a long format

pivot_longer(-c(month, stat), names_to = "metric", values_to = "value")|>

Pull out the stat into respective columns

pivot_wider (names_from = stat, values_from = value) |>

Filter to just April

filter(month == "apr") |[>

Remove the month column

select (-month) |>

Print reformatted and filtered data as a flextable

flextable() |>

Include a blank first column header

set_header_labels(metric = "") |[>

Use simple format and autofit

theme booktabs() |>

fontsize(size = 9, part = "all") |[>

autofit ()

48

Print summary table
apr_summary

Table 5.1: Descriptive statistics for the fraction of annual rainfall during April for Miami,
Florida between 1906 and 2022, and its log transformation.

fraction log10_fraction
min 0.0010 -3.0000
q1 0.0224 -1.6498
median 0.0470 -1.3279
mean 0.0560 -1.4140
q3 0.0735 -1.1337
max 0.2876 -0.5412
variance 0.0021 0.1850
sd 0.0463 0.4301
sk 1.8372 -1.0215
ku 5.0577 1.6156

49

Create histogram

mia_rain_fraction_tidy |>
filter(month == "apr", stat == "fraction") |[>
ggplot(aes(x = values)) +
geom_histogram(bins = 30) +
xlab("Fraction of annual rainfall in April") +
ylab(pasteO("Frequency (n = ", n_years, ")"))

Create (Q-Q plot
mia_rain_fraction_tidy [>

filter(month == "apr", stat == "fraction") |>
ggplot (aes(sample = values)) +
stat_qq() +

stat_qq_line() +
xlab("Theoretical Quantiles") +
ylab("Standardized residuals")

Create histogram for loglO tranformed data
mia_rain_fraction_tidy [>
filter(month == "apr", stat == "loglO_fraction") |[>
ggplot(aes(x = values)) +
geom_histogram(bins = 30) +
xlab("Logl0 transformed fraction of annual rainfall in April") +
ylab(pasteO("Frequency (n = ", n_years, ")"))

Create (Q-Q plot for loglO transformed data
mia_rain_fraction_tidy |[>

filter(month == "apr", stat == "loglO_fraction") |[>
gegplot (aes(sample = values)) +
stat_qq() +

stat_qq_line() +
xlab("Theoretical Quantiles") +
ylab("Standardized residuals")

50

0.3-

15-

—~ L o2- .
~ .
o 10- 3 o
1 2
c <
~ o
> [5]
2 N
[} B
=]]
g o g
* 7]
0 (W | |
00 01 02 03 2 4 0 1 2
Fraction of annual rainfall in April Theoretical Quantiles
(a) Histogram (b) Q-Q Plot
15-
1)
f: ©
I 10- 3
1 2
c <
~ °
> (5]
9 N
[} B
=]]
g o g
* 0
L]
L]
, AN B o
3 2 A 2 4 0 1 2
Log10 transformed fraction of annual rainfall in April Theoretical Quantiles
(c) Histogram (Logl0 transformed) (d) Q-Q Plot (Logl0 transformed)

Figure 5.2: Histogram (a) and Q-Q plot (b) for the fraction of annual rainfall during April for
Miami, Florida between 1906 and 2022, and histogram (c) and Q-Q plot (d) of the
corresponding log transformed data.

51

5.3 Exercise 3

I used the descriptive statistics from the previous exercise to generate samples from a known
normal distribution. I compared 1,000 versus 21 samples. Figure 5.3 shows how the Q-Q Q-Q
plot improves with more samples. Meanwhile, in Figure 5.4 we can see how much worse the
Q-Q plot looks with fewer samples!

Generate realizations of 1000 samples from known normal distribution
apr_rain_fraction_sample_1000 <- round(
rnorm(n = 1000,
mean = mia_rain_fraction_summary |>
filter(stat == "fraction",
month == "apr") |> pull(mean),
sd = mia_rain_fraction_summary$sd[1]), 4

Generate realization of 21 samples from known normal distribution
apr_rain_fraction_sample_21 <- round(
rnorm(n = 21,
mean = mia_rain_fraction_summary |>
filter(stat == "fraction",
month == "apr") |> pull(mean),
sd = mia_rain_fraction_summary$sd[1]), 4

Generate realization of 1000 samples from known normal loglO distribution
apr_rain_fraction_loglO_sample_1000 <- round(
rnorm(n = 1000,
mean = mia_rain_fraction_summary |>
filter(stat == "loglO_fraction",
month == "apr") [> pull(mean),
sd = mia_rain_fraction_summary$sd[1]), 4

Generate realization of 21 samples from known normal loglO distribution
apr_rain_fraction_loglO_sample_21 <- round(
rnorm(n = 21,
mean = mia_rain_fraction_summary |>
filter(stat == "loglO_fraction",
month == "apr") [> pull(mean),
sd = mia_rain_fraction_summary$sd[1]), 4

52

Create histogram with 1000 samples
ggplot () +
aes(x = apr_rain_fraction_sample_1000) +
geom_histogram(bins = 30) +
xlab("Realized samples of the fraction of annual rainfall in April") +
ylab("Frequency (n = 1,000)")

Create Q-Q plot with 1000 samples

ggplot O +
aes(sample = apr_rain_fraction_sample_1000) +
stat_qq() +
stat_qq_line() +
xlab("Theoretical Quantiles") +
ylab("Standardized residuals")

Create histogram with 1000 loglO samples
ggplot() +
aes(x = apr_rain_fraction_loglO_sample_1000) +
geom_histogram(bins = 30) +
xlab("Realized samples of the loglO fraction of annual rainfall in April") +
ylab("Frequency (n = 1000)")

Create Q-Q plot with 1000 loglO samples
ggplot () +
aes(sample = apr_rain_fraction_loglO_sample_1000) +
stat_qq() +
stat_qq_line() +
xlab("Theoretical Quantiles") +
ylab("Standardized residuals")

Here we plot samples from the known normal distribution with only 21 samples.

Create histogram with 21 samples
ggplot () +
aes(x = apr_rain_fraction_sample_21) +
geom_histogram(bins = 30) +
xlab("Realized samples of the fraction of annual rainfall in April") +
ylab("Frequency (n = 21)")

Create (Q-Q plot with 21 samples

ggplot () +
aes(sample = apr_rain_fraction_sample_21) +

53

0.15-

75-

s 0

S 0.10
<] 3
< ‘n
I 50- 2
< 2

2 N 0.05
S B
(7] ©
3 o
o =
O 25- 8
w (7]

0.00

C]
0- - >
0.00 0.05 0.10 0.15 -2 0 2
Realized samples of the fraction of annual rainfall in April Theoretical Quantiles
(a) Histogram (b) Q-Q Plot
120- -1.30-
_. 90- @
g g
o o
= D
" 9_)
(=

= 60- o
> I
o =
g S
©
g E
L s0- =
w 7]

0- =
' ' ' ' ' ' ' '
-1.50 -1.45 -1.40 -1.35 -1.30 -2 0 2

Realized samples of the log10 fraction of annual rainfall in April Theoretical Quantiles
(c) Histogram (Logl0 transformed) (d) Q-Q Plot (Logl0 transformed)

Figure 5.3: Histogram (a) and Q-Q plot (b) for 1000 samples realized from a normal distri-
bution based on the fraction of annual rainfall during April for Miami, Florida
between 1906 and 2022, and histogram (c) and Q-Q plot (d) of the corresponding
log transformed data.

54

stat_qq() +

stat_qq_line() +
xlab("Theoretical Quantiles") +
ylab("Standardized residuals")

Create histogram with 21 loglO samples
ggplot() +
aes(x = apr_rain_fraction_loglO_sample_21) +
geom_histogram(bins = 30) +
xlab("Realized samples of the loglO fraction of annual rainfall in April") +
ylab("Frequency (n = 21)")

Create Q-Q plot with 21 loglO samples

ggplot() +
aes(sample = apr_rain_fraction_loglO_sample_21) +
stat_qq() +
stat_qq_line() +
xlab("Theoretical Quantiles") +
ylab("Standardized residuals")

55

3-

=21)
v

Frequency (n

i

0.00 004 0.08
Realized samples of the fraction of annual rainfall in April

(a) Histogram

-y

-1.450 -1.425 -1.400 1375
Realized samples of the log10 fraction of annual rainfall in April

3-

21)

2-

1-

Frequency (n

0-

(c) Histogram (Logl0 transformed)

'
0.12

o

o

o
'

0.04-

Standardized residuals

0.00-

0
Theoretical Quantiles

(b) Q-Q Plot

Standardized residuals

Theoretical Quantiles

(d) Q-Q Plot (Logl0 transformed)

Figure 5.4: Histogram (a) and Q-Q plot (b) for 21 samples realized from a normal distribution
based on the fraction of annual rainfall during April for Miami, Florida between
1906 and 2022, and histogram (c) and Q-Q plot (d) of the corresponding log trans-

formed data.

56

5.4 Exercise 4

I used dagoTest() to run the D’Agostino normality test on:

the fraction of annual rainfall for April

the logl0 transformed fraction of annual rainfall for April

1,000 realized samples from a normal distribution

1,000 realized samples from a logl0 transformed normal distribution
the waiting time between Old Faithful’s eruptions

the logl0 transformed waiting time between Old Faithful’s eruptions

S G N

In Figure 5.5, I include histograms and Q-Q plots for the waiting time between Old Faithful’s
eruptions. Table 5.2 provides key values for the normality tests listed above. In reading
more about the test, I was reminded that the null hypothesis of the data being drawn from
a normally distributed population is rejected when the p-value is less than the significance
level (0.05). Following this decision rule, all of the tests listed above were rejected, except
the samples that were realized from a normal distribution (numbers 3 and 4 above). This
result aligns with the Q-Q plots shown previously, where all of them show departures from
the expected theoretical quantiles, except the 1,000 realized samples that generated using a
normal distribution (Figure 5.3).

Calculate sample size
n_eruptions <- length(faithful$waiting)

Create histogram
faithful |>
ggplot(aes(x = waiting)) +
geom_histogram(bins = 30) +
xlab("Waiting time between 01d Faithful's eruptions") +
ylab(pasteO("Frequency (n = ", n_eruptions, ")"))

Create (Q-Q plot

faithful |[>
ggplot (aes(sample = waiting)) +
stat_qq() +
stat_qq_line() +
xlab("Theoretical Quantiles") +
ylab("Standardized residuals")

Create histogram for loglO transformed data
faithful |[>
gegplot(aes(x = loglO(waiting))) +
geom_histogram(bins = 30) +

57

xlab("LoglO transformed waiting time between 01d Faithful's eruptions") +
ylab(pasteO("Frequency (n = ", n_eruptions, ")"))

Create Q-Q plot for loglO transformed data
faithful |[>
ggplot(aes(sample = loglO(waiting))) +
stat_qq() +
stat_qq_line() +
xlab("Theoretical Quantiles") +
ylab("Standardized residuals")

125-

=

o

=}
v

< 20- z
N
N 3
1 2
£ S 75
> Q
3 N
[} B
2 10- §
£ g S0
(7]
25-
0-
40 50 60 70 80 %0 -3 2 41 0 1 2 3
Waiting time between Old Faithful's eruptions Theoretical Quantiles
(a) Histogram (b) Q-Q Plot
30-
s ke
N
N 3
120~ g
c <
~ o
> Q
2 N
g S
=] ©
g E
£ 07 5
(7]
0- m
17 18 1’9 20 3 2 A 0 1 2 3
Log10 transformed waiting time between Old Faithful's eruptions Theoretical Quantiles
(c) Histogram (Logl0 transformed) (d) Q-Q Plot (Logl0 transformed)

Figure 5.5: Histogram (a) and Q-Q plot (b) for the waiting time between Old Faithful’s erup-
tions, and histogram (c¢) and Q-Q plot (d) of the corresponding log transformed
data.

58

Normal tests on rainfall data, sample realization, and 0ld Faithful
dago_mia_rain <- dagoTest(mia_rain_fraction$apr)

dago_mia_rain_loglO <- dagoTest(loglO(mia_rain_fraction$apr))
dago_mia_rain_sample_1000 <- dagoTest(apr_rain_fraction_sample_1000)
dago_mia_rain_loglO_sample_1000 <- dagoTest(apr_rain_fraction_loglO_sample_1000)
dago_faithful <- dagoTest(faithful$waiting)

dago_faithful_loglO <- dagoTest(loglO(faithful$waiting))

Collect results in a tibble for table output
dagoTest_results <- tibble(

test = c(
"April fraction",
"April loglO(fraction)",
"April Normal sample (n = 1000)",
"April loglO Normal sample (n = 1000)",
"0ld Faithful waiting",
"logl10(01d Faithful waiting)"

o

chi_square = c(
round(dago_mia_rain@test$statistic[1], 4),
round(dago_mia_rain_loglOGtest$statistic[1], 4),
round(dago_mia_rain_sample_10000test$statistic[1], 4),
round(dago_mia_rain_loglO_sample_10000test$statistic[1], 4),
round(dago_faithful@test$statistic[1], 4),
round(dago_faithful_loglOGtest$statistic[1], 4)

e

p_value = c(
round(dago_mia_rain@test$p.value[1], 4),
round(dago_mia_rain_loglO@test$p.value[l], 4),
round(dago_mia_rain_sample_10000test$p.value[1], 4),
round(dago_mia_rain_loglO_sample_10000test$p.value[1], 4),
round (dago_faithfulOtest$p.valuel[l], 4),
round (dago_faithful_logl0Qtest$p.value[1], 4)

)

59

Flextable
flextable(dagoTest_results) [>
set_header_labels(test = "", chi_square = " 2", p_value = "p-value") [>
colformat_num(j = c("chi_square", "p_value"), digits = 4) [>
theme booktabs() [>
fontsize(size = 9, part = "all") |[>
autofit ()

Table 5.2: Chi-squared and p-value statistics from various normality tests conducted using the
D’Agostino-Pearson omnibus normality test.

X2 p-value
April fraction 59.3249 0.0000
April log10(fraction) 24.3791 0.0000
April Normal sample (n = 1000) 0.8834 0.6429
April log10 Normal sample (n = 1000) 0.9314 0.6277
Old Faithful waiting 109.2417 0.0000
log10(Old Faithful waiting) 55.5880 0.0000

60

5.5 Exercise 5

I also computed the ranks and return periods for April rainfall. When preparing the data for
the plot, I noticed that it was necessary for the ranking to have a negative sign to generate a
descending ranking. Lastly, in my first attempt of the plot with the logarithmic x-axis ticks, I
realized I was accidentally doing logl0 twice. When I use scale_x_logl0 to adjust the x-axis
scale, I noticed I need to read in the non-transformed data. That way the axis values in
Figure 5.6 reflect the actual return periods in years, but the spacing is logarithmic.

Rank April rainfall and compute return period
apr_rank <- mia_rain |>
select(apr) |[>
sort largest to smallest
arrange(desc(apr)) |[>
Create rank and compute return period
mutate(
rank = row_number (),
recurrence = (n_years + 1) / rank,
logl0_recurrence = loglO(recurrence)

)

Plot ranked rainfall amounts as a function of the loglO of the return period
ggplot (apr_rank, aes(x = recurrence, y = apr)) +

geom_point () +

scale_x_logl0(

breaks = c(1, 10, 100),
labels = c("1", "10", "100")
) +

labs(x = "Return period (years, log scale)", y = "Ranked April rainfall (inches)")

61

A
o1
[

w
(O]
N
o
=
= °
‘910- e o o °
= °
© ®
=)
= °
o o0
< .'
I
2 5
c
©
x

O-

1 10 100

Return period (years, log scale)

Figure 5.6: Ranked rainfall ammounts for the month of April as a function of the logl0 of the
retunperiod in years.

62

	Introduction
	Set Up

	Assignment 1 – Calculus Review
	Assignment 1 - Calculus Review
	Plot the polynomial
	Solve the 2-D Laplace in Excel
	Plot streamlines instead of arrows in Section
	Links to Colab and GitHub

	Assignment 2 - Reading On-line Data and Visualizing Hurricane Tracks
	Assignment 2 - Reading On-line Data and Visualizing Hurricane Tracks
	Data Retrieval and Parsing
	Data Visualization
	Links to Colab and GitHub

	Assignment 3 - Normal distributions and the Galton board
	Assignment 3 - Normal distributions and the Galton board
	Exercise 1
	Exercise 2
	Exercise 3

	Exercise
	Exercise 4
	Links to Colab and GitHub

	Assignment 4
	Assignment 4
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5

